|
|
A212796
|
|
Square array read by antidiagonals: T(m,n) = number of spanning trees in C_m X C_n.
|
|
4
|
|
|
1, 2, 2, 3, 32, 3, 4, 294, 294, 4, 5, 2304, 11664, 2304, 5, 6, 16810, 367500, 367500, 16810, 6, 7, 117600, 10609215, 42467328, 10609215, 117600, 7, 8, 799694, 292626432, 4381392020, 4381392020, 292626432, 799694, 8, 9, 5326848, 7839321861, 428652000000, 1562500000000, 428652000000, 7839321861, 5326848, 9
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
REFERENCES
|
G. Kreweras, Complexite et circuits Euleriens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212. See p. 210, Parag. 4.
|
|
LINKS
|
Table of n, a(n) for n=1..45.
Eric Weisstein's World of Mathematics, Spanning Tree
Eric Weisstein's World of Mathematics, Torus Grid Graph
|
|
FORMULA
|
T(m,n) = m*n*Prod(Prod( 4*sin(h*Pi/m)^2+4*sin(k*Pi/n)^2, h=1..m-1), k=1..n-1).
|
|
EXAMPLE
|
Array begins:
1, 2, 3, 4, 5, 6, ...
2, 32, 294, 2304, 16810, 117600, 799694, 5326848, 34928082, 226195360, ...
3, 294, 11664, 367500, 10609215, 292626432, 7839321861, 205683135000, ...
4, 2304, 367500, 42467328, 4381392020, 428652000000, 40643137651228, ...
...
|
|
MAPLE
|
Digits:=200;
T:=(m, n)->round(Re(evalf(simplify(expand(
m*n*mul(mul( 4*sin(h*Pi/m)^2+4*sin(k*Pi/n)^2, h=1..m-1), k=1..n-1))))));
|
|
CROSSREFS
|
Diagonals give A212797, A212798, A212799, A212800.
Cf. A116469, A173958.
Sequence in context: A109590 A074935 A320103 * A078239 A083113 A184847
Adjacent sequences: A212793 A212794 A212795 * A212797 A212798 A212799
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
N. J. A. Sloane, May 27 2012
|
|
STATUS
|
approved
|
|
|
|