login
A212744
Number of (w,x,y,z) with all terms in {0,...,n} and w=max{w,x,y,z}-min{w,x,y,z}; i.e., the range of (w,x,y,z) is its first term.
3
1, 8, 34, 83, 181, 314, 532, 791, 1177, 1604, 2206, 2843, 3709, 4598, 5776, 6959, 8497, 10016, 11962, 13859, 16261, 18578, 21484, 24263, 27721, 31004, 35062, 38891, 43597, 48014, 53416, 58463, 64609, 70328, 77266, 83699, 91477, 98666, 107332, 115319, 124921
OFFSET
0,2
COMMENTS
For a guide to related sequences, see A211795.
FORMULA
a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7).
G.f.: (1+x+x^2)*(x^4+6*x^3+16*x^2+6*x+1) / ((1+x)^3*(x-1)^4).
From Colin Barker, Jan 28 2016: (Start)
a(n) = (30*n^3+3*((-1)^n+15)*n^2+3*((-1)^n+15)*n+(-1)^n+15)/16.
a(n) = (15*n^3+24*n^2+24*n+8)/8 for n even.
a(n) = (15*n^3+21*n^2+21*n+7)/8 for n odd.
(End)
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w == Max[w, x, y, z] - Min[w, x, y, z],
s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
Map[t[#] &, Range[0, 40]] (* A212744 *)
PROG
(PARI) Vec((1+x+x^2)*(x^4+6*x^3+16*x^2+6*x+1)/((1+x)^3*(x-1)^4) + O(x^100)) \\ Colin Barker, Jan 28 2016
CROSSREFS
Cf. A211795.
Sequence in context: A307091 A024847 A154516 * A298174 A249743 A298140
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 26 2012
STATUS
approved