login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212722 E.g.f. satisfies: A(x) = exp( x/(1 - x*A(x)^2) ). 4
1, 1, 3, 25, 313, 5341, 115651, 3036517, 93767185, 3330162073, 133737097411, 5992748728561, 296433923379529, 16044427276953973, 943207466055927619, 59848531677741706621, 4076826825898115406241, 296742863575079244130225 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..358

Vaclav Kotesovec, Asymptotic of sequences A161630, A212722, A212917 and A245265

FORMULA

a(n) = Sum_{k=0..n} n! * (1 + 2*(n-k))^(k-1)/k! * C(n-1,n-k).

Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then

a(n,m) = Sum_{k=0..n} n! * m*(m + 2*(n-k))^(k-1)/k! * C(n-1,n-k).

a(n) ~ n^(n-1) * (1+1/(2*c))^(n+1/2) / (2*sqrt(1+c) * exp(n) * c^n), where c = LambertW(1/sqrt(2)) = 0.450600515864833072257... . - Vaclav Kotesovec, Jul 15 2014

EXAMPLE

E.g.f: A(x) = 1 + x + 3*x^2/2! + 25*x^3/3! + 313*x^4/4! + 5341*x^5/5! +...

such that, by definition:

log(A(x))/x = 1 + x*A(x)^2 + x^2*A(x)^4 + x^3*A(x)^6 + x^4*A(x)^8 +...

Related expansions:

log(A(x)) = x/(1-x*A(x)^2) = x + 2*x^2/2! + 18*x^3/3! + 216*x^4/4! + 3640*x^5/5! + 78000*x^6/6! + 2032464*x^7/7! + 62400128*x^8/8! +...

A(x)^2 = 1 + 2*x + 8*x^2/2! + 68*x^3/3! + 880*x^4/4! + 15312*x^5/5! + 336064*x^6/6! +...

A(x)^4 = 1 + 4*x + 24*x^2/2! + 232*x^3/3! + 3232*x^4/4! + 59104*x^5/5! + 1343296*x^6/6! +...

MATHEMATICA

Table[Sum[n! * (1 + 2*(n-k))^(k-1)/k! * Binomial[n-1, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 15 2014 *)

PROG

(PARI) {a(n, m=1)=if(n==0, 1, sum(k=0, n, n!/k!*m*(m+2*(n-k))^(k-1)*binomial(n-1, n-k)))}

(PARI) {a(n, m=1)=local(A=1+x); for(i=1, n, A=exp(x/(1-x*A^2+x*O(x^n)))); n!*polcoeff(A^m, n)}

for(n=0, 21, print1(a(n), ", "))

CROSSREFS

Cf. A161630, A212917, A245265.

Sequence in context: A292111 A123989 A001907 * A236268 A181085 A143635

Adjacent sequences:  A212719 A212720 A212721 * A212723 A212724 A212725

KEYWORD

nonn

AUTHOR

Paul D. Hanna, May 25 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 09:04 EDT 2021. Contains 343030 sequences. (Running on oeis4.)