login
A212669
a(n) = 2/15 * (32*n^5 + 80*n^4 + 40*n^3 - 20*n^2 + 3*n).
5
18, 340, 2022, 7400, 20602, 48060, 99022, 186064, 325602, 538404, 850102, 1291704, 1900106, 2718604, 3797406, 5194144, 6974386, 9212148, 11990406, 15401608, 19548186, 24543068, 30510190, 37585008, 45915010, 55660228, 66993750, 80102232, 95186410, 112461612
OFFSET
1,1
COMMENTS
a(n) is the difference between numbers of nonnegative multiples of 2*n+1 with even and odd digit sum in base 2*n in interval [0, 64*n^6).
FORMULA
a(n) = 2/(2*n+1)*Sum_{i=1..n} tan^6(Pi*i/(2*n+1)).
G.f.: 2*x*(9+116*x+126*x^2+4*x^3+x^4) / (1-x)^6. - Colin Barker, Dec 01 2015
PROG
(PARI) Vec(2*x*(9+116*x+126*x^2+4*x^3+x^4)/(1-x)^6 + O(x^50)) \\ Colin Barker, Dec 01 2015
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved