login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212668 a(n) = (16/3)*(n+1)*n*(n-1) + 8*n^2 + 1. 6
9, 65, 201, 449, 841, 1409, 2185, 3201, 4489, 6081, 8009, 10305, 13001, 16129, 19721, 23809, 28425, 33601, 39369, 45761, 52809, 60545, 69001, 78209, 88201, 99009, 110665, 123201, 136649, 151041, 166409, 182785, 200201, 218689, 238281, 259009, 280905, 304001 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) is the difference between numbers of nonnegative multiples of 2*n+1  with even and odd digit sum in base 2*n in interval [0, 32*n^5).

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

V. Shevelev, On monotonic strengthening of Newman-like phenomenon on (2m+1)-multiples in base 2m, arXiv:0710.3177 [math.NT], 2007.

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = 2/(2*n+1)*Sum_{i=1..n} tan^5(Pi*i/(2*n+1)) * sin(2*Pi*i/(2*n+1)).

G.f.: x*(9+29*x-5*x^2-x^3) / (1-x)^4. - Colin Barker, Nov 30 2015

MATHEMATICA

LinearRecurrence[{4, -6, 4, -1}, {9, 65, 201, 449}, 40] (* Vincenzo Librandi, Dec 01 2015 *)

PROG

(PARI) a(n)=16*(n+1)*n*(n-1)/3+8*n^2+1 \\ Charles R Greathouse IV, Oct 07 2015

(PARI) Vec(x*(9+29*x-5*x^2-x^3)/(1-x)^4 + O(x^100)) \\ Colin Barker, Nov 30 2015

(MAGMA) [(16/3)*(n+1)*n*(n-1)+8*n^2+1: n in [1..40]]; // Vincenzo Librandi, Dec 01 2015

CROSSREFS

Cf. A038754, A084990, A091042, A212500, A212592.

Sequence in context: A043021 A076287 A226929 * A020299 A250415 A237040

Adjacent sequences:  A212665 A212666 A212667 * A212669 A212670 A212671

KEYWORD

nonn,easy

AUTHOR

Vladimir Shevelev and Peter J. C. Moses, May 23 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 20 17:24 EST 2018. Contains 297960 sequences.