

A212607


Number of distinct sums <= 1 of distinct reciprocals of integers <= n.


3



1, 2, 3, 5, 8, 14, 21, 38, 70, 129, 238, 440, 504, 949, 1790, 2301, 4363, 8272, 12408, 23604, 26675, 45724, 87781, 168549, 181989, 351076, 677339, 1306894, 1399054, 2709128, 2795144, 5423805, 10525050
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..32.


EXAMPLE

a(3) = 5 counts numbers { 0, 1/3, 1/2, 5/6, 1 }, each of which is can be represented as the sum of distinct reciprocals 1/1, 1/2, and 1/3.


MAPLE

s:= proc(n) option remember;
`if`(n=0, {0}, map(x> `if`(n1<n*x, x, [x, x+1/n][]), s(n1)))
end:
a:= n> nops(s(n)):
seq(a(n), n=0..20); # Alois P. Heinz, May 23 2012


MATHEMATICA

s[_] := s[n] = If[n == 0, {0}, If[n1 < n*#, #, {#, # + 1/n}]& /@ s[n1] // Flatten];
a[n_] := Length[s[n]];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 32}] (* JeanFrançois Alcover, May 13 2019, after Alois P. Heinz *)


CROSSREFS

For possibly nondistinct reciprocals, see A212606.
Cf. A020473, A092669, A092671, A208480.
Sequence in context: A034413 A034416 A306912 * A056366 A000046 A293641
Adjacent sequences: A212604 A212605 A212606 * A212608 A212609 A212610


KEYWORD

nonn


AUTHOR

Max Alekseyev, May 22 2012


EXTENSIONS

a(27)a(32) from Alois P. Heinz, May 23 2012


STATUS

approved



