%I #19 Mar 29 2024 10:22:53
%S 1,8,15,232,449,7400,14351,237832,461313,7648968,14836623,246015528,
%T 477194433,7912700328,15348206223,254499628104,493651049985,
%U 8185582834056,15877514618127,263276481572712,510675448527297,8467876653984360
%N a(n) is the difference between multiples of 9 with even and odd digit sum in base 8 in interval [0,8^n).
%H Vladimir Shevelev, <a href="http://arxiv.org/abs/0710.3177">On monotonic strengthening of Newman-like phenomenon on (2m+1)-multiples in base 2m</a>, arXiv:0710.3177 [math.NT], 2007.
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,36,0,-126,0,84,0,-9).
%F For n>=9, a(n) = 36*a(n-2)-126*a(n-4)+84*a(n-6)-9*a(n-8).
%F G.f.: x*(1+8*x-21*x^2-56*x^3+35*x^4+56*x^5-7*x^6-8*x^7)/((1-3*x^2)*(1-33*x^2+27*x^4-3*x^6)). [_Bruno Berselli_, May 22 2012]
%t LinearRecurrence[{0, 36, 0, -126, 0, 84, 0, -9}, {1, 8, 15, 232, 449, 7400, 14351, 237832}, 22] (* _Bruno Berselli_, May 22 2012 *)
%Y Cf. A038754, A212500, A212592, A091042.
%K nonn,base,easy
%O 1,2
%A _Vladimir Shevelev_ and _Peter J. C. Moses_, May 22 2012