login
Number of (w,x,y,z) with all terms in {1,...,n} and min{|w-x|,|w-y|}=min{|x-y|,|x-z|}.
2

%I #18 Apr 25 2024 10:41:14

%S 0,1,8,31,80,171,308,509,780,1137,1584,2143,2812,3615,4552,5645,6892,

%T 8321,9924,11731,13736,15967,18416,21117,24056,27269,30744,34515,

%U 38568,42943,47620,52641,57988,63701,69760,76211,83028,90259,97880

%N Number of (w,x,y,z) with all terms in {1,...,n} and min{|w-x|,|w-y|}=min{|x-y|,|x-z|}.

%C For a guide to related sequences, see A211795.

%H Bertrand Teguia Tabuguia, <a href="https://arxiv.org/abs/2401.00256">Hypergeometric-Type Sequences</a>, arXiv:2401.00256 [cs.SC], 2023.

%H Bertrand Teguia Tabuguia, <a href="https://arxiv.org/abs/2404.10143">Computing with Hypergeometric-Type Terms</a>, arXiv:2404.10143 [cs.SC], 2024.

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-1,-2,-1,2,1,-1).

%F a(n) = a(n-1)+2*a(n-2)-a(n-3)-2*a(n-4)-a(n-5)+2*a(n-6)+a(n-7)-a(n-8).

%F G.f.: (x + 7*x^2 + 21*x^3 + 34*x^4 + 39*x^5 + 25*x^6 + 7*x^7)/(1 - x - 2* x^2 + x^3 + 2*x^4 + x^5 - 2*x^6 - x^7 + x^8).

%t t = Compile[{{n, _Integer}}, Module[{s = 0},

%t (Do[If[Min[Abs[w - x], Abs[w - y]] == Min[Abs[x - y], Abs[x - z]],

%t s = s + 1],

%t {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];

%t Map[t[#] &, Range[0, 40]] (* A212579 *)

%t LinearRecurrence[{1, 2, -1, -2, -1, 2, 1, -1}, {0, 1, 8, 31, 80, 171, 308, 509}, 50]

%Y Cf. A211795.

%K nonn,easy

%O 0,3

%A _Clark Kimberling_, May 22 2012