OFFSET
0,3
COMMENTS
For a guide to related sequences, see A211795.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1).
FORMULA
a(n) = 3*a(n-1)-a(n-2)-5*a(n-3)+5*a(n-4)+a(n-5)-3*a(n-6)+a(n-7).
From Colin Barker, Dec 05 2015: (Start)
a(n) = 1/48*(38*n^4-20*n^3-32*n^2+2*(3*(-1)^n+13)*n+3*((-1)^n-1)).
G.f.: 4*x^2*(2+6*x+8*x^2+3*x^3) / ((1-x)^5*(1+x)^2).
(End)
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Abs[w - x] < Abs[x - y] + Abs[y - z], s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 40]] (* A212571 *)
%/4 (* integers *)
LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {0, 0, 8, 48, 168, 428, 916}, 40] (* Harvey P. Dale, Aug 28 2024 *)
PROG
(PARI) concat([0, 0], Vec(4*x^2*(2+6*x+8*x^2+3*x^3)/((1-x)^5*(1+x)^2) + O(x^100))) \\ Colin Barker, Dec 05 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 22 2012
STATUS
approved