login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212561 Number of (w,x,y,z) with all terms in {1,...,n} and w + x = 2y + 2z. 3
0, 0, 1, 5, 12, 26, 45, 75, 112, 164, 225, 305, 396, 510, 637, 791, 960, 1160, 1377, 1629, 1900, 2210, 2541, 2915, 3312, 3756, 4225, 4745, 5292, 5894, 6525, 7215, 7936, 8720, 9537, 10421, 11340, 12330, 13357, 14459, 15600, 16820, 18081, 19425 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Probably related to A199771 and A200252.

For a guide to related sequences, see A211795.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).

FORMULA

a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6).

a(n) = (2*n^3-2*n^2+n-1-(n-1)*(-1)^n)/8 = (n-1)*(2*n^2+1-(-1)^n)/8. - Luce ETIENNE, Jul 26 2014

G.f.: x^2*(x^3+x^2+3*x+1) / ((x-1)^4*(x+1)^2). - Colin Barker, Feb 17 2015

MATHEMATICA

t = Compile[{{n, _Integer}}, Module[{s = 0},

(Do[If[w + x == 2 y + 2 z, s = s + 1],

{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];

Map[t[#] &, Range[0, 40]]   (* A212561 *)

LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 0, 1, 5, 12, 26}, 50] (* Harvey P. Dale, Dec 04 2016 *)

PROG

(PARI) concat([0, 0], Vec(x^2*(x^3+x^2+3*x+1)/((x-1)^4*(x+1)^2) + O(x^100))) \\ Colin Barker, Feb 17 2015

CROSSREFS

Cf. A211795.

Sequence in context: A223321 A073095 A294017 * A199771 A200252 A176448

Adjacent sequences:  A212558 A212559 A212560 * A212562 A212563 A212564

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, May 21 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 18 22:11 EDT 2019. Contains 321305 sequences. (Running on oeis4.)