login
A212548
Number of partitions of n containing at least one part m-8 if m is the largest part.
2
0, 0, 1, 1, 3, 4, 8, 11, 19, 26, 41, 56, 82, 110, 156, 205, 281, 366, 488, 627, 821, 1041, 1340, 1684, 2135, 2657, 3331, 4108, 5095, 6238, 7663, 9315, 11354, 13709, 16588, 19915, 23936, 28580, 34154, 40573, 48225, 57031, 67452, 79428, 93530, 109695, 128639
OFFSET
8,5
LINKS
FORMULA
G.f.: Sum_{i>0} x^(2*i+8) / Product_{j=1..8+i} (1-x^j).
EXAMPLE
a(10) = 1: [9,1].
a(11) = 1: [9,1,1].
a(12) = 3: [9,1,1,1], [9,2,1], [10,2].
a(13) = 4: [9,1,1,1,1], [9,2,1,1], [9,3,1], [10,2,1].
a(14) = 8: [9,1,1,1,1,1], [9,2,1,1,1], [9,2,2,1], [9,3,1,1], [9,4,1], [10,2,1,1], [10,2,2], [11,3].
MAPLE
b:= proc(n, i) option remember;
`if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))
end:
a:= n-> add(b(n-2*m-8, min(n-2*m-8, m+8)), m=1..(n-8)/2):
seq(a(n), n=8..60);
MATHEMATICA
Table[Count[IntegerPartitions[n], _?(MemberQ[#, Max[#]-8]&)], {n, 8, 55}] (* Harvey P. Dale, May 05 2016 *)
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i]]];
a[n_] := Sum[b[n - 2 m - 8, Min[n - 2 m - 8, m + 8]], {m, 1, (n - 8)/2}];
a /@ Range[8, 60] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
CROSSREFS
Column k=8 of A212551.
Sequence in context: A358910 A212546 A212547 * A212549 A212550 A024786
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 20 2012
STATUS
approved