The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212502 Composite numbers n that divides the imaginary part of (1+2i)^A201629(n). 3
 4, 8, 12, 16, 24, 32, 36, 48, 56, 64, 72, 96, 108, 112, 128, 132, 143, 144, 156, 168, 192, 216, 224, 256, 264, 272, 288, 312, 324, 336, 384, 392, 396, 399, 432, 448, 468, 496, 504, 512, 527, 528, 544, 552, 576, 624, 648, 672, 768, 779, 784, 792, 816, 864 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If p is a prime number then p divides the imaginary part of (1+2i)^A201629(n). The numbers of this sequence may be called Fermat pseudoprimes to base 1+2i. LINKS Robert Israel, Table of n, a(n) for n = 1..10000 Jose María Grau, A. M. Oller-Marcen, Manuel Rodriguez and D. Sadornil, Fermat test with Gaussian base and Gaussian pseudoprimes, arXiv:1401.4708 [math.NT], 2014. MAPLE A201629:= proc(n) if n::even then n elif n mod 4 = 1 then n-1 else n+1 fi end proc: filter:= proc(n) not isprime(n) and type(Powmod(1+2*x, A201629(n), x^2+1, x) mod n, integer) end proc: select(filter, [\$2..1000]); # Robert Israel, Nov 06 2019 MATHEMATICA A201629[n_]:=Which[Mod[n, 4]==3, n+1, Mod[n, 4]==1, n-1, True, n]; Select[1+ Range[1000], ! PrimeQ[#] && Im[PowerMod[1 + 2I, A201629[#], #]] == 0 &] CROSSREFS Cf. A201629, A213337, A212601. Sequence in context: A311394 A172412 A322136 * A071385 A329883 A066192 Adjacent sequences:  A212499 A212500 A212501 * A212503 A212504 A212505 KEYWORD nonn AUTHOR José María Grau Ribas, May 19 2012 EXTENSIONS Definition revised by José María Grau Ribas, Oct 12 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 19:04 EDT 2020. Contains 337388 sequences. (Running on oeis4.)