login
A212492
Prime p such that p, p+10, p+12 are all primes.
2
7, 19, 31, 61, 97, 127, 139, 181, 229, 271, 337, 409, 421, 607, 631, 811, 1009, 1021, 1039, 1051, 1279, 1291, 1471, 1597, 1609, 1657, 1777, 1861, 1867, 1987, 2017, 2131, 2371, 2539, 2647, 2677, 2719, 2791, 3109, 3319, 3361, 3457, 3517, 3529, 3547, 3571, 3907
OFFSET
1,1
COMMENTS
All terms are congruent to 1 (mod 6). - Zak Seidov, Oct 28 2021
LINKS
Salvatore Di Guida, Table of n, a(n) for n = 1..85
MATHEMATICA
Select[Range[5000], PrimeQ[#] && PrimeQ[#+10] && PrimeQ[#+12] &] (* T. D. Noe, May 18 2012 *)
PROG
(Python)
from sympy import isprime, primerange
def ok(p): return isprime(p+10) and isprime(p+12)
print(list(filter(ok, primerange(1, 3910)))) # Michael S. Branicky, Oct 28 2021
CROSSREFS
Sequence in context: A169605 A216532 A249375 * A374535 A234310 A141338
KEYWORD
nonn
AUTHOR
Salvatore Di Guida, May 18 2012
STATUS
approved