6 = 6.
336 = 6*28*2.
333312 = 6*28*496*2*2.
5418319872 = 6*28*496*8128*2*2*2.
a(6) > 5*10^14. - Michel Marcus and David A. Corneth, Nov 01 2020
From David A. Corneth, Nov 01 2020: (Start)
sigma(n)/n increases to a record in A004394. This can be used to limit the checked divisors of some candidate m.
For n >= 6, If gcd(a(4), a(5)) | a(n) then a(n) > 1.1*10^17. If (gcd(a(4), a(5)) * 2047) | a(n) then a(n) > 1.8 * 10^20. (End)
a(6) <= 6*28*496*8128*33550336*137438691328*2*2*2*2*2. - Michel Marcus, Nov 01 2020
From David A. Corneth, Nov 01 2020: (Start)
Using the same as above, a(7) <= 1716908124551996896669734276042690920448.
a(8) <= 7917841189233800244470292555938612387093638081493952626688. (End)
Conjecture: a(n) <= 2^(n-1) * Product_{k=1..n} A000396(k). - Daniel Suteu, Nov 01 2020
From Daniel Suteu, Nov 01 2020: (Start)
a(6) <= 7089671638182002688000,
a(7) <= 106345074572730040320,
a(9) <= 1826980530660612389572800675840. (End)
|