%I
%S 10,150,30,2338,486,85,36814,7862,1597,246,582440,126606,27024,5211,
%T 707,9240426,2034200,445780,93308,16649,2037,146861788,32644314,
%U 7274268,1581686,321320,53553,5864,2337014158,523487828,118029501,26242268
%N T(n,k)=Number of 0..3 arrays of length n+2*k1 with sum no more than 3*k in any length 2k subsequence (=50% duty cycle)
%C Table starts
%C ....10....150.....2338.....36814.....582440.....9240426.....146861788
%C ....30....486.....7862....126606....2034200....32644314.....523487828
%C ....85...1597....27024....445780....7274268...118029501....1908601444
%C ...246...5211....93308...1581686...26242268...430682205....7023308036
%C ...707..16649...321320...5622580...95010466..1578372444...25966120647
%C ..2037..53553..1098260..19960518..344305566..5795798788...96239314549
%C ..5864.172980..3708268..70600212.1246724695.21292987433..357117150362
%C .16886.558743.12564894.248263590.4504766041.78186208521.1325550644016
%H R. H. Hardin, <a href="/A212471/b212471.txt">Table of n, a(n) for n = 1..936</a>
%e Some solutions for n=3 k=4
%e ..0....2....2....2....2....2....2....2....0....2....0....0....0....0....0....2
%e ..0....2....0....2....2....2....0....0....0....2....0....0....2....0....0....0
%e ..0....2....1....2....2....0....0....0....2....1....1....0....0....1....0....3
%e ..3....2....0....2....0....0....3....0....0....0....0....0....0....0....2....0
%e ..1....0....0....1....0....2....2....1....2....2....0....3....0....0....1....2
%e ..0....0....3....1....3....2....0....3....1....1....0....1....3....0....3....3
%e ..0....0....1....0....0....1....2....0....1....0....0....0....1....0....3....0
%e ..3....0....3....2....3....0....1....0....0....3....0....2....2....0....2....0
%e ..2....1....2....2....0....2....1....0....2....1....3....0....3....2....0....2
%e ..0....0....0....1....1....2....0....1....1....0....2....3....3....0....0....0
%Y Column 1 is A006357(n+1)
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ May 17 2012
