login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212423 Frobenius pseudoprimes == 2,3 (mod 5) with respect to Fibonacci polynomial x^2 - x - 1. 3
5777, 10877, 75077, 100127, 113573, 161027, 162133, 231703, 430127, 635627, 851927, 1033997, 1106327, 1256293, 1388903, 1697183, 2263127, 2435423, 2662277, 3175883, 3399527, 3452147, 3774377, 3900797, 4109363, 4226777, 4403027, 4828277, 4870847 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Grantham incorrectly claims that "the first Frobenius pseudoprime with respect to the Fibonacci polynomial x^2 - x - 1 is 5777". However n = 5777 is the first Frobenius pseudoprime with respect to x^2 - x - 1 that has Jacobi symbol (5/n) = -1, i.e., n == 2,3 (mod 5). Unrestricted version with the first term 4181 is given in A212424.

Intersection of A212424 and A047221.

Composite k == 2,3 (mod 5) such that Fibonacci(k) == -1 (mod k) and that k divides Fibonacci(k+1). - Jianing Song, Sep 12 2018

REFERENCES

R. Crandall, C. B. Pomerance. Prime Numbers: A Computational Perspective. Springer, 2nd ed., 2005.

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..14070 (terms below 10^13 from Dana Jacobsen's site)

Jon Grantham, Frobenius Pseudoprimes, Mathematics of Computation, 7 (2000), 873-891.

Dana Jacobsen, Pseudoprime Statistics, Tables, and Data.

Eric Weisstein's World of Mathematics, Frobenius Pseudoprime.

PROG

(PARI) { isFP23(n) = if(ispseudoprime(n), return(0)); t=Mod(x*Mod(1, n), (x^2-x-1)*Mod(1, n))^n; (kronecker(5, n)==-1 && t==1-x) }

CROSSREFS

Cf. A047221, A094063, A094395, A094411, A212424.

Sequence in context: A094063 A094395 A094411 * A004933 A031574 A004953

Adjacent sequences:  A212420 A212421 A212422 * A212424 A212425 A212426

KEYWORD

nonn

AUTHOR

Max Alekseyev, May 16 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 6 19:52 EDT 2020. Contains 336256 sequences. (Running on oeis4.)