login
A212371
Self-convolution yields A212370.
1
1, 1, 7, 110, 2875, 109683, 5678706, 380631612, 31942104109, 3272150145947, 401101904099311, 57890233456712428, 9706532459502104648, 1869487973632573739154, 409621529316840179292622, 101253590975320030584465534, 28030292175164530782257192631
OFFSET
0,3
COMMENTS
A212370 satisfies: 1 = Sum_{n>=0} A212370(n)*x^n*[Sum_{k=0..n+1} binomial(n+1, k)^2*(-x)^k]^2.
EXAMPLE
G.f.: A(x) = 1 + x + 7*x^2 + 110*x^3 + 2875*x^4 + 109683*x^5 +...
such that
A(x)^2 = 1 + 2*x + 15*x^2 + 234*x^3 + 6019*x^4 + 226656*x^5 +...+ A212370(n)*x^n +...
CROSSREFS
Cf. A212370.
Sequence in context: A171193 A357393 A371315 * A112463 A009471 A301990
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 10 2012
STATUS
approved