login
A212366
Number of Dyck n-paths all of whose ascents and descents have lengths equal to 1 (mod 7).
2
1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 7, 11, 16, 22, 29, 38, 52, 76, 117, 184, 288, 442, 662, 972, 1414, 2063, 3047, 4572, 6952, 10645, 16303, 24857, 37672, 56821, 85541, 128948, 195103, 296548, 452501, 692053, 1058990, 1619311, 2473171, 3773889, 5757885, 8791090
OFFSET
0,9
LINKS
FORMULA
G.f. satisfies: A(x) = 1+A(x)*(x-x^7*(1-A(x))).
a(n) = a(n-1) + Sum_{k=1..n-7} a(k)*a(n-7-k) if n>0; a(0) = 1.
EXAMPLE
a(0) = 1: the empty path.
a(1) = 1: UD.
a(8) = 2: UDUDUDUDUDUDUDUD, UUUUUUUUDDDDDDDD.
a(9) = 4: UDUDUDUDUDUDUDUDUD, UDUUUUUUUUDDDDDDDD, UUUUUUUUDDDDDDDDUD, UUUUUUUUDUDDDDDDDD.
MAPLE
a:= proc(n) option remember;
`if`(n=0, 1, a(n-1) +add(a(k)*a(n-7-k), k=1..n-7))
end:
seq(a(n), n=0..50);
# second Maple program:
a:= n-> coeff(series(RootOf(A=1+A*(x-x^7*(1-A)), A), x, n+1), x, n):
seq(a(n), n=0..50);
MATHEMATICA
With[{k = 7}, CoefficientList[Series[(1 - x + x^k - Sqrt[(1 - x + x^k)^2 - 4*x^k]) / (2*x^k), {x, 0, 40}], x]] (* Vaclav Kotesovec, Sep 02 2014 *)
CROSSREFS
Column k=7 of A212363.
Sequence in context: A225088 A175777 A098574 * A309838 A334251 A175776
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 10 2012
STATUS
approved