login
Sequence of coefficients of x^0 in marked mesh pattern generating function Q_{n,132}^(0,3,0,0)(x).
3

%I #42 Sep 10 2016 08:26:34

%S 1,1,2,5,9,14,20,27,35,44,54,65,77,90,104,119,135,152,170,189,209,230,

%T 252,275,299,324,350,377,405,434,464,495,527,560,594,629

%N Sequence of coefficients of x^0 in marked mesh pattern generating function Q_{n,132}^(0,3,0,0)(x).

%H S. Kitaev, J. Remmel and M. Tiefenbruck, <a href="http://arxiv.org/abs/1201.6243">Marked mesh patterns in 132-avoiding permutations I</a>, arXiv preprint arXiv:1201.6243 [math.CO], 2012.

%H Kyu-Hwan Lee, Se-jin Oh, <a href="http://arxiv.org/abs/1601.06685">Catalan triangle numbers and binomial coefficients</a>, arXiv:1601.06685 [math.CO], 2016.

%F Conjecture: for n>=2, a(n)=(n^2+n-2)/2. - _Robert Price_, Jun 02 2012

%F Conjecture: for n>=5, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). G.f.: (1-2*x+2*x^2+x^3-x^4)/(1-x)^3. - _Colin Barker_, Jul 06 2012

%t QQ0[t, x] = (1 - (1-4*x*t)^(1/2)) / (2*x*t); QQ1[t, x] = 1/(1 - t*QQ0[t, x]); QQ2[t, x] = (1 + t*(QQ1[t, x] - QQ0[t, x]))/(1 - t*QQ0[t, x]); QQ3[t, x] = (1 + t*(QQ2[t, x] - QQ0[t, x] + t*(QQ1[t, x] - QQ0[t, x])))/(1 - t*QQ0[t, x]); q=Simplify[Series[QQ3[t, x], {t, 0, 35}]]; CoefficientList[q /. x -> 0, t] (* _Robert Price_, Jun 04 2012 *)

%Y Cf. A132337, A212346.

%Y A201163 is similar. - _Robert Price_, Jun 02 2012

%K nonn,more

%O 0,3

%A _N. J. A. Sloane_, May 09 2012

%E a(10)-a(35) from _Robert Price_, Jun 02 2012

%E Added a(0) to correspond to given offset and to be consistent with A212346, _Robert Price_, Jun 02 2012