The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A212318 Expansion of phi(q^2)^2 / (phi(-q) * phi(q^4)) in powers of q where phi() is a Ramanujan theta function. 7
 1, 2, 8, 16, 32, 60, 96, 160, 256, 394, 624, 944, 1408, 2092, 3008, 4320, 6144, 8612, 12072, 16720, 22976, 31424, 42528, 57312, 76800, 102254, 135728, 179104, 235264, 307852, 400704, 519808, 671744, 864672, 1109904, 1419456, 1809568, 2300284, 2914272, 3682400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of chi(q^2)^5 / (chi(-q) * chi(q^4))^2 in powers of q where chi() is a Ramanujan theta function. Expansion of eta(q^4)^12 * eta(q^16)^2 / (eta(q)^2 * eta(q^2)^3 * eta(q^8)^9) in powers of q. Euler transform of period 16 sequence [ 2, 5, 2, -7, 2, 5, 2, 2, 2, 5, 2, -7, 2, 5, 2, 0, ...]. a(n) = 2 * A215348(n) unless n=0. a(2*n) = A014969(n). a(2*n + 1) = 2 * A232772(n). a(n) ~ exp(sqrt(n)*Pi)/(4*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Sep 08 2017 EXAMPLE G.f. = 1 + 2*q + 8*q^2 + 16*q^3 + 32*q^4 + 60*q^5 + 96*q^6 + 160*q^7 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^2]^2 / (EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^4]), {q, 0, n}] PROG (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^12 * eta(x^16 + A)^2 / (eta(x + A)^2 * eta(x^2 + A)^3 * eta(x^8 + A)^9), n))} CROSSREFS Cf. A014969, A215348, A232772. Sequence in context: A295949 A077666 A232358 * A346461 A232392 A176143 Adjacent sequences: A212315 A212316 A212317 * A212319 A212320 A212321 KEYWORD nonn AUTHOR Michael Somos, Oct 25 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 6 22:49 EST 2023. Contains 360111 sequences. (Running on oeis4.)