login
Numbers n such that fusc(k) < fusc(n) for all k < n, where fusc is Stern's diatomic series.
4

%I #19 May 13 2022 07:59:33

%S 1,3,5,9,11,19,21,35,37,43,69,73,75,83,85,139,147,149,165,171,277,293,

%T 299,331,339,341,555,587,595,597,661,683,1109,1173,1189,1195,1323,

%U 1355,1363,1365,2219,2347,2379,2387,2389,2645,2709,2731,4437,4691,4693,4757,4779,5291

%N Numbers n such that fusc(k) < fusc(n) for all k < n, where fusc is Stern's diatomic series.

%C Position of first occurrence of each distinct element in A270362. - _Jeffrey Shallit_, Mar 15 2016

%H Charles R Greathouse IV, <a href="/A212288/b212288.txt">Table of n, a(n) for n = 1..645</a>

%H Ali Keramatipour and Jeffrey Shallit, <a href="https://arxiv.org/abs/2205.06223">Record-Setters in the Stern Sequence</a>, arXiv:2205.06223 [math.CO], 2022.

%o (PARI) fusc(n)=my(a=1, b=0); while(n, if(n%2, b+=a, a+=b); n>>=1); b

%o r=0;for(n=1,1e5,t=fusc(n); if(t>r,r=t;print1(n", ")))

%Y Cf. A002487, A212289, A270362.

%K nonn

%O 1,2

%A _Charles R Greathouse IV_, Jun 13 2012