login
Number of binary increasing trees with n nodes and "min-path" of length 5.
1

%I #17 Nov 05 2020 05:31:00

%S 0,0,0,1,10,65,385,2345,15204,105880,793210,6382860,55020966,

%T 506505272,4963812035,51629528080,568303728360,6602266433920,

%U 80751432154868,1037402030622720,13968636570706370,196748236140538368,2893482720437769317,44355269272024284160

%N Number of binary increasing trees with n nodes and "min-path" of length 5.

%H Filippo Disanto, <a href="http://arxiv.org/abs/1202.1139">André permutations of the second kind associated to strictly binary increasing trees and left to right minima in their sub-permutations</a>, arXiv preprint arXiv:1202.1139 [math.CO], 2012-2014.

%Y A diagonal of A186366.

%K nonn

%O 2,5

%A _N. J. A. Sloane_, May 11 2012

%E More terms from _Alois P. Heinz_, Apr 03 2014