OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33.
FORMULA
a(n) ~ 2*2^(3/4)*(1+sqrt(2))^(n+3)/(n^(3/2)*sqrt(Pi)) if n is even and a(n) ~ 2^(3/4)*(1+sqrt(2))^(n+4)/(n^(3/2)*sqrt(Pi)) if n is odd. - Vaclav Kotesovec, May 21 2013
Conjecture D-finite with recurrence: (n+1)*a(n) +2*(n-1)*a(n-1) +6*(-2*n+1)*a(n-2) +12*(-2*n+5)*a(n-3) +(37*n-77)*a(n-4) +2*(37*n-151)*a(n-5) +6*(-n+5)*a(n-6) +12*(-n+7)*a(n-7)=0. - R. J. Mathar, Aug 20 2018
MAPLE
a:= proc(n) option remember; `if`(n<6, [1, 1, 2, 4, 8, 18][n+1],
(-132*a(n-1) +(660-834*n+84*n^2)*a(n-2) +804*a(n-3)
+(2981*n-6690-259*n^2)*a(n-4) -72*a(n-5) +6*(n-6)*(7*n-59)*a(n-6))
/ ((n+1)*(7*n-66)))
end:
seq(a(n), n=0..40); # Alois P. Heinz, May 21 2013
MATHEMATICA
CoefficientList[Series[((1+2*x)*Sqrt[1-6*x^2+x^4]-1+5*x^2-2*x^3)/(2*x*(1-6*x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, May 21 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 11 2012
STATUS
approved