



1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 5, 3, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 5, 5, 1, 1, 3, 1, 1, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Completely determined by the exponents >=2 in the prime factorization of n (cf. A212172).
Not the same as the number of odd divisors of n (A001227(n)); see example.
Multiplicative because A000005 is multiplicative and A000265 is completely multiplicative.  Andrew Howroyd, Aug 01 2018


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000
Index entries for sequences computed from exponents in factorization of n


FORMULA

a(n) = A000265(A000005(n)).


EXAMPLE

48 has a total of 10 divisors (1, 2, 3, 4, 6, 8, 12, 16, 24 and 48). Since the largest odd divisor of 10 is 5, a(48) = 5.


MATHEMATICA

Table[Block[{nd=DivisorSigma[0, n]}, nd/2^IntegerExponent[nd, 2]], {n, 100}] (* Indranil Ghosh, Jul 19 2017, after PARI code *)


PROG

(PARI) a(n) = my(nd = numdiv(n)); nd/2^valuation(nd, 2); \\ Michel Marcus, Jul 19 2017
(Python)
from sympy import divisor_count, divisors
def a(n): return [i for i in divisors(divisor_count(n)) if i%2==1][1]
print map(a, range(1, 101)) # Indranil Ghosh, Jul 19 2017


CROSSREFS

Cf. A000005, A000265, A212172.
Sequence in context: A061893 A078530 A291568 * A256452 A010276 A214268
Adjacent sequences: A212178 A212179 A212180 * A212182 A212183 A212184


KEYWORD

nonn,mult,changed


AUTHOR

Matthew Vandermast, Jun 04 2012


STATUS

approved



