login
A212168
Numbers n such that the maximal exponent in its prime factorization is less than the number of positive exponents (A051903(n) < A001221(n)).
12
6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 126, 129, 130, 132, 133, 134, 138, 140, 141, 142, 143
OFFSET
1,1
COMMENTS
A225230(a(n)) > 1; A050326(a(n)) > 1. - Reinhard Zumkeller, May 03 2013
Subsequence of A130092. - Ivan N. Ianakiev, Sep 17 2019
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Primefan, The First 2500 Integers Factored (first of 5 pages)
EXAMPLE
10 = 2^1*5^1 has 2 distinct prime factors, hence 2 positive exponents in its prime factorization (although the 1s are often left implicit). 2 is larger than the maximal exponent in 10's prime factorization, which is 1. Therefore, 10 belongs to the sequence.
MATHEMATICA
okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] < Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *)
Select[Range[200], Max[FactorInteger[#][[All, 2]]]<PrimeNu[#]&] (* Harvey P. Dale, Nov 21 2018 *)
PROG
(Haskell)
import Data.List (findIndices)
a212168 n = a212168_list !! (n-1)
a212168_list = map (+ 1) $ findIndices (> 0) a225230_list
-- Reinhard Zumkeller, May 03 2013
(PARI) is(n, f=factor(n))=my(e=f[, 2]); #e && vecmax(e)<#e \\ Charles R Greathouse IV, Jan 09 2022
CROSSREFS
Complement of A212165. See also A212164, A212166-A212167.
Subsequence of A188654.
Sequence in context: A329140 A362605 A182853 * A344585 A080365 A000469
KEYWORD
nonn
AUTHOR
Matthew Vandermast, May 22 2012
STATUS
approved