

A212168


Numbers n such that the maximal exponent in its prime factorization is less than the number of positive exponents (A051903(n) < A001221(n)).


9



6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 126, 129, 130, 132, 133, 134, 138, 140, 141, 142, 143
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A225230(a(n)) > 1; A050326(a(n)) > 1.  Reinhard Zumkeller, May 03 2013


REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Primefan, The First 2500 Integers Factored (first of 5 pages)


EXAMPLE

10 = 2^1*5^1 has 2 distinct prime factors, hence 2 positive exponents in its prime factorization (although the 1s are often left implicit). 2 is larger than the maximal exponent in 10's prime factorization, which is 1. Therefore, 10 belongs to the sequence.


MATHEMATICA

okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] < Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *)
Select[Range[200], Max[FactorInteger[#][[All, 2]]]<PrimeNu[#]&] (* Harvey P. Dale, Nov 21 2018 *)


PROG

(Haskell)
import Data.List (findIndices)
a212168 n = a212168_list !! (n1)
a212168_list = map (+ 1) $ findIndices (> 0) a225230_list
 Reinhard Zumkeller, May 03 2013


CROSSREFS

Complement of A212165. See also A212164, A212166A212167.
Subsequence of A188654.
Sequence in context: A130092 A289619 A182853 * A080365 A000469 A120944
Adjacent sequences: A212165 A212166 A212167 * A212169 A212170 A212171


KEYWORD

nonn


AUTHOR

Matthew Vandermast, May 22 2012


STATUS

approved



