login
A212154
(A212153(n)^3 + 1)/7^n, n >= 0.
3
1, 18, 140, 20, 479393, 219600095, 4804461081, 686351583, 6679631931865, 82080661415031, 8898622841908566, 174149720118385232, 7290250572352382182, 65315972853762054047, 98713213404986046050649
OFFSET
0,2
COMMENTS
a(n) is integer because A212153(n) is one of the three solutions of X(n)^3+1 == 0 (mod 7^n), namely the one satisfying also X(n) == 5 (mod 7).
See the comments on A210853, and the Nagell reference given in A210848.
FORMULA
a(n) = (b(n)^3+1)/7^n, n>=0, with b(n):=A212153(n) given by a recurrence. See also a Maple program for b(n) there.
EXAMPLE
a(0) = 1/1 = 1.
a(3) = (19^3 + 1)/7^3 = 6860/343 = 20, (b(3) = 19^7 (mod 7^3) = 19).
CROSSREFS
Cf. A210848, A210849 (the p=5 case). A210853, A212156.
Sequence in context: A114239 A087115 A163707 * A108680 A204273 A081074
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, May 02 2012
STATUS
approved