%I #36 Jun 26 2012 12:57:35
%S 3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3,3,8,3,2,7,9,7,2,6,
%T 6,1,9,3,4,7,5,4,9,8,8,0,8,8,3,5,2,2,4,2,2,2,9,2,9,6,2,8,7,7,4,4,2,2,
%U 5,8,7,3,9,0,5,1,0,4,9,3,7,8,7,5,5,1,0,7,4,4,5,7,7,6,7,2,0,2,4,1,5,7,9,6,7
%N Decimal expansion of k such that e^(k*sqrt(163)) = round(e^(Pi*sqrt(163))).
%C Decimal expansion of log(262537412640768744)/sqrt(163).
%C First differs from A000796 at a(32).
%C Note that 262537412640768744 = 24*10939058860032031 = 2^3 * 3 * 10939058860032031, is the nearest integer to the value of Ramanujan's constant e^(Pi*sqrt(163)) = 262537412640768743.999999999999250... = A060295.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanConstant.html">Ramanujan's constant</a>
%F k = log(round(e^(Pi*sqrt(163))))/sqrt(163).
%e 3.14159265358979323846264338327972661934754988... (very close to Pi).
%t RealDigits[Log[Round[E^(Pi Sqrt[163])]]/Sqrt[163], 10, 105][[1]] (* _Bruno Berselli_, Jun 26 2012 *)
%Y Cf. A000796, A003173, A019297, A060295, A080283, A102912, A160514, A160515, A181045.
%K nonn,cons
%O 1,1
%A _Omar E. Pol_, Jun 25 2012
%E More terms from _Alois P. Heinz_, Jun 25 2012