login
A212090
Number of (w,x,y,z) with all terms in {1,...,n} and w<x+y+z.
2
0, 1, 16, 80, 251, 610, 1261, 2331, 3970, 6351, 9670, 14146, 20021, 27560, 37051, 48805, 63156, 80461, 101100, 125476, 154015, 187166, 225401, 269215, 319126, 375675, 439426, 510966, 590905, 679876, 778535, 887561, 1007656, 1139545
OFFSET
0,3
COMMENTS
a(n)+A000332(n+1) = n^4. For a guide to related sequences, see A211795.
FORMULA
a(n) = 5a(n-1)-10a(n-2)+10a(n-3)-5a(n-4)+a(n-5).
G.f.: -x*(1+11*x+10*x^2+x^3) / (x-1)^5.
a(n) = n*(-2+(1+(2+23*n)*n)*n)/24.
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w < x + y + z, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
Map[t[#] &, Range[0, 50]] (* A212090 *)
FindLinearRecurrence[%]
(* Peter J. C. Moses, Apr 13 2012 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 16, 80, 251}, 34] (* Ray Chandler, Aug 02 2015 *)
CROSSREFS
Sequence in context: A271992 A008511 A130810 * A212240 A050468 A242167
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 01 2012
STATUS
approved