login
A212028
G.f. satisfies: A(x) = 1 + x*A(x*A(x)^3)^2.
1
1, 1, 2, 11, 74, 635, 6296, 70268, 864106, 11546531, 165996792, 2548556963, 41546769324, 715850868468, 12986529841038, 247255748839532, 4926870211273246, 102495266879754087, 2221254395951869988, 50049980203162990978, 1170440788530570387644
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 74*x^4 + 635*x^5 + 6296*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 5*x^2 + 26*x^3 + 174*x^4 + 1462*x^5 + 14279*x^6 +...
A(x)^3 = 1 + 3*x + 9*x^2 + 46*x^3 + 306*x^4 + 2526*x^5 + 24311*x^6 +...
A(x*A(x)^3) = 1 + x + 5*x^2 + 32*x^3 + 273*x^4 + 2715*x^5 + 30542*x^6 + 379200*x^7 + 5117211*x^8 + 74266646*x^9 + 1150267802*x^10 +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*subst(A^3, x, x*A^3)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 27 2012
STATUS
approved