login
A211995
a(n) = floor(7^n / 2^n) mod 2^n.
10
0, 1, 0, 2, 6, 13, 46, 33, 246, 479, 398, 883, 20, 6215, 9467, 16751, 42245, 115091, 140675, 492363, 674695, 1312859, 2497856, 2451041, 4384342, 6956591, 24348068, 118772672, 147268896, 112787953, 394757837, 844781520, 809251672, 2832380853, 1323398395, 13221828975
OFFSET
0,4
COMMENTS
Conjectured to be always positive for n > 2.
REFERENCES
Lew Baxter, Exponential Diophantine Equations, post to NmbrThry list, Oct 25 2012
MATHEMATICA
Table[Mod[Floor[7^n/2^n], 2^n], {n, 0, 29}] (* Alonso del Arte, Oct 25 2012 *)
PROG
(PARI) a(n)=7^n\2^n%2^n
(Maxima) A211995(n):=mod(floor( 7^n / 2^n ), 2^n); makelist(A211995(n), n, 0, 30); /* Martin Ettl, Oct 25 2012 */
CROSSREFS
Sequence in context: A320804 A284223 A241784 * A245010 A057243 A294130
KEYWORD
nonn
AUTHOR
M. F. Hasler, Oct 25 2012
STATUS
approved