login
A211991
Difference between the arithmetic derivative of n and the sum of proper divisors of n.
10
0, 0, 0, 1, 0, -1, 0, 5, 2, -1, 0, 0, 0, -1, -1, 17, 0, 0, 0, 2, -1, -1, 0, 8, 4, -1, 14, 4, 0, -11, 0, 49, -1, -1, -1, 5, 0, -1, -1, 18, 0, -13, 0, 8, 6, -1, 0, 36, 6, 2, -1, 10, 0, 15, -1, 28, -1, -1, 0, -16, 0, -1, 10, 129, -1, -17, 0, 14, -1, -15, 0, 33
OFFSET
1,8
COMMENTS
Observations: at least the first 50 indices of nonnegative terms are also the first 50 terms of A212165. Also at least the first 28 indices of negative terms are also the first 28 terms of A212168, since A212168 is the complement of A212165.
LINKS
FORMULA
a(n) = A003415(n) - A001065(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (A136141 - A013661 + 1) / 2 = 0.0641113... . - Amiram Eldar, Mar 17 2024
MATHEMATICA
dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; Table[dn[n] - (DivisorSigma[1, n] - n), {n, 100}] (* T. D. Noe, Dec 27 2012 *)
PROG
(PARI)
A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
A211991(n) = (A003415(n) - (sigma(n)-n)); \\ Antti Karttunen, Mar 08 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Omar E. Pol, Dec 18 2012
STATUS
approved