OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Doron Zeilberger, Using generatingfunctionology to enumerate distinct-multiplicity partitions.
FORMULA
G.f.: (9*x^45 +20*x^44 +44*x^43 +76*x^42 +121*x^41 +172*x^40 +234*x^39 +292*x^38 +346*x^37 +380*x^36 +412*x^35 +415*x^34 +417*x^33 +401*x^32 +389*x^31 +365*x^30 +361*x^29 +351*x^28 +359*x^27 +365*x^26 +383*x^25 +391*x^24 +413*x^23 +422*x^22 +436*x^21 +444*x^20 +454*x^19 +454*x^18 +458*x^17 +450*x^16 +437*x^15 +415*x^14 +383*x^13 +342*x^12 +298*x^11 +248*x^10 +198*x^9 +152*x^8 +110*x^7 +76*x^6 +49*x^5 +30*x^4 +16*x^3 +8*x^2 +3*x +1) / ((x^2-x+1) *(x^4-x^3+x^2-x+1) *(x^6+x^3+1) *(x^4+1) *(x^6+x^5+x^4+x^3+x^2+x+1) *(x^2+x+1)^2 *(x^4+x^3+x^2+x+1)^2 *(x^2+1)^2 *(x+1)^3 *(x-1)^4). - Alois P. Heinz, Feb 09 2017
EXAMPLE
For n=3 the a(3) = 2 partitions are [3] and [1,1,1]. Note that [2,1] does not count, as 1 and 2 appear with the same nonzero multiplicity.
PROG
(Haskell)
a211859 n = p 0 [] [1..4] n where
p m ms _ 0 = if m `elem` ms then 0 else 1
p _ _ [] _ = 0
p m ms ks'@(k:ks) x
| x < k = 0
| m == 0 = p 1 ms ks' (x - k) + p 0 ms ks x
| m `elem` ms = p (m + 1) ms ks' (x - k)
| otherwise = p (m + 1) ms ks' (x - k) + p 0 (m : ms) ks x
-- Reinhard Zumkeller, Dec 27 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Matthew C. Russell, Apr 25 2012
STATUS
approved