OFFSET
0,4
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
FORMULA
G.f.: Product_{k>0} (1+x^k)^A038548(k). - Vaclav Kotesovec, Aug 19 2019
G.f.: Product_{k>=1} (Product_{j=1..k} (1 + x^(k*j))). - Vaclav Kotesovec, Aug 19 2019
EXAMPLE
a(0) = 1: 0 = the empty sum.
a(1) = 1: 1 = 1*1.
a(2) = 1: 2 = 1*2.
a(3) = 2: 3 = 1*1 + 1*2 = 1*3.
a(4) = 3: 4 = 2*2 = 1*1 + 1*3 = 1*4.
a(5) = 4: 5 = 1*1 + 2*2 = 1*2 + 1*3 = 1*1 + 1*4 = 1*5.
a(6) = 6: 6 = 1*1 + 1*5 = 1*1 + 1*2 + 1*3 = 1*2 + 1*4 = 1*2 + 2*2 = 1*6 = 2*3
a(7) = 8: 7 = 1*1 + 1*2 + 1*4 = 1*1 + 1*2 + 2*2 = 1*1 + 1*6 = 1*1 + 2*3 = 1*2 + 1*5 = 1*3 + 1*4 = 1*3 + 2*2 = 1*7.
MAPLE
with(numtheory):
b:= proc(n, i) option remember; local c;
c:= ceil(tau(i)/2);
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1)
+add(b(n-i*j, i-1) *binomial(c, j), j=1..min(c, n/i))))
end:
a:= n-> b(n, n):
seq(a(n), n=0..60);
MATHEMATICA
b[n_, i_] := b[n, i] = Module[{c}, c = Ceiling[DivisorSigma[0, i]/2]; If[n == 0, 1, If[i < 1, 0, b[n, i-1] + Sum[b[n-i*j, i-1] *Binomial[c, j], {j, 1, Min[c, n/i]}]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Sep 09 2014, after Alois P. Heinz *)
nmax = 50; CoefficientList[Series[Product[Product[(1 + x^(k*j)), {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 22 2012
STATUS
approved