login
A211854
G.f. satisfies: A(x) = (1+x*A(x)^2)*(1+x^2*A(x)^2)*(1+x^3*A(x)^2).
4
1, 1, 3, 11, 42, 173, 746, 3321, 15155, 70516, 333282, 1595620, 7722036, 37715028, 185661034, 920244770, 4588778327, 23003827327, 115867080623, 586089365947, 2975978506450, 15163583668774, 77507719810688, 397320926569995, 2042152353063874
OFFSET
0,3
LINKS
FORMULA
a(n) ~ s * sqrt((1 + 2*r + 4*r^3*s^2 + 5*r^4*s^2 + 6*r^5*s^4 + 3*r^2*(1 + s^2)) / (Pi*(1 + r + 6*r^3*s^2 + 6*r^4*s^2 + 15*r^5*s^4 + r^2*(1 + 6*s^2)))) / (2*n^(3/2)*r^n), where r = 0.1829152018931276962733907918487144062831105492965... and s = 1.828118673659452305128580127483211657533668751760... are real roots of the system of equations (1 + r*s^2)*(1 + r^2*s^2)*(1 + r^3*s^2) = s, 2*r*s*(1 + r + 2*r^3*s^2 + 2*r^4*s^2 + 3*r^5*s^4 + r^2*(1 + 2*s^2)) = 1. - Vaclav Kotesovec, Nov 22 2017
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 42*x^4 + 173*x^5 + 746*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 28*x^3 + 115*x^4 + 496*x^5 + 2211*x^6 +...
A(x)^4 = 1 + 4*x + 18*x^2 + 84*x^3 + 391*x^4 + 1844*x^5 + 8800*x^6 +...
A(x)^6 = 1 + 6*x + 33*x^2 + 176*x^3 + 912*x^4 + 4674*x^5 + 23842*x^6 +...
where A(x) = 1 + x*(1+x+x^2)*A(x)^2 + x^3*(1+x+x^2)*A(x)^4 + x^6*A(x)^6.
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1+x*A^2)*(1+x^2*A^2)*(1+x^3*A^2)+x*O(x^n)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A151088 A149069 A151089 * A200212 A149070 A066655
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 22 2012
STATUS
approved