login
A211817
Number of (n+1)X(n+1) -10..10 symmetric matrices with every 2X2 subblock having sum zero and one, two or three distinct values
1
221, 623, 1477, 3361, 7389, 16191, 34993, 76417, 165745, 365037, 801507, 1788695, 3988703, 9030407, 20455109, 46942737, 107843925, 250411345, 582132123, 1364670701, 3202526531, 7563851273, 17879861115, 42470025643, 100944212731
OFFSET
1,1
COMMENTS
Symmetry and 2X2 block sums zero implies that the diagonal x(i,i) are equal modulo 2 and x(i,j)=(x(i,i)+x(j,j))/2*(-1)^(i-j)
LINKS
FORMULA
Empirical: a(n) = 7*a(n-1) +13*a(n-2) -193*a(n-3) +91*a(n-4) +2362*a(n-5) -3292*a(n-6) -16847*a(n-7) +34429*a(n-8) +76986*a(n-9) -209369*a(n-10) -230969*a(n-11) +853727*a(n-12) +433070*a(n-13) -2475538*a(n-14) -365411*a(n-15) +5255855*a(n-16) -451861*a(n-17) -8289963*a(n-18) +2015886*a(n-19) +9768083*a(n-20) -3415078*a(n-21) -8589800*a(n-22) +3606842*a(n-23) +5599559*a(n-24) -2592984*a(n-25) -2671225*a(n-26) +1296044*a(n-27) +912979*a(n-28) -447866*a(n-29) -216050*a(n-30) +104216*a(n-31) +33398*a(n-32) -15468*a(n-33) -3016*a(n-34) +1312*a(n-35) +120*a(n-36) -48*a(n-37)
EXAMPLE
Some solutions for n=3
.-2.-2.-2.-4..-10..8.-1..3....1..1..1..4....3.-4..3.-2...-5..6.-7..6
.-2..6.-2..8....8.-6.-1.-1....1.-3..1.-6...-4..5.-4..3....6.-7..8.-7
.-2.-2.-2.-4...-1.-1..8.-6....1..1..1..4....3.-4..3.-2...-7..8.-9..8
.-4..8.-4.10....3.-1.-6..4....4.-6..4.-9...-2..3.-2..1....6.-7..8.-7
CROSSREFS
Sequence in context: A375463 A147284 A171427 * A157490 A020247 A177422
KEYWORD
nonn
AUTHOR
R. H. Hardin Apr 21 2012
STATUS
approved