This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211665 Minimal number of iterations of log_10 applied to n until the result is < 1. 0
 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,10 COMMENTS Different from A055642 and A138902, cf. Example. Instead the real-valued log function one can consider only the integer part (i.e., A004216), since log_b(x) < k <=> x < b^k <=> floor(x) < b^k for any integer k >= 0; that's also why the first 2, 3, 4, ... appears exactly for 10, 10^10, 10^(10^10) etc. - M. F. Hasler, Dec 12 2018 LINKS FORMULA With the definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n))))...))); E_{i=1..0} := 1; example: E_{i=1..3} 10 = 10^(10^10) = 10^10000000000, we have:   a(E_{i=1..n} 10) = a(E_{i=1..n-1} 10) + 1, for n >= 1. G.f.: g(x) = 1/(1-x)*Sum_{k>=0} x^(E_{i=1..k} 10).   = (x + x^10 + x^(10^10) + ...)/(1-x). EXAMPLE a(n) = 1, 2, 3, 4 for n = 1, 10, 10^10, 10^(10^10), i.e., n = 1, 10, 10000000000, 10^10000000000. a(n) = 2 for all n >= 10, n < 10^10. MATHEMATICA a[n_] := Length[NestWhileList[Log10, n, # >= 1 &]] - 1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *) PROG (PARI) a(n, i=1)={while(n=logint(n, 10), i++); i} \\ M. F. Hasler, Dec 07 2018 CROSSREFS Cf. A001069, A010096, A211661, A211663, A211666, A211668, A211670. Sequence in context: A065687 A300403 A077433 * A065685 A084100 A130130 Adjacent sequences:  A211662 A211663 A211664 * A211666 A211667 A211668 KEYWORD base,nonn AUTHOR Hieronymus Fischer, Apr 30 2012 EXTENSIONS Name reworded by M. F. Hasler, Dec 12 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 23 03:57 EDT 2019. Contains 321422 sequences. (Running on oeis4.)