OFFSET
0,2
COMMENTS
For a guide to related sequences, see A211422.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
FORMULA
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
From Colin Barker, Aug 23 2017: (Start)
G.f.: x*(4 + 22*x + 40*x^2 + 23*x^3 + 7*x^4) / ((1 - x)^4*(1 + x)^2).
a(n) = (64*n^3 - 14*n^2 + 12*n) / 16 for n even.
a(n) = (64*n^3 - 14*n^2 + 24*n - 10) / 16 for n odd. (End)
MATHEMATICA
t = Compile[{{u, _Integer}},
Module[{s = 0}, (Do[If[w + 2 x + 2 y > 0,
s = s + 1], {w, #}, {x, #}, {y, #}] &[
Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]];
Map[t[#] &, Range[0, 60]] (* A211624 *)
FindLinearRecurrence[%]
(* Peter J. C. Moses, Apr 13 2012 *)
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 4, 30, 104, 245, 485}, 36] (* Ray Chandler, Aug 02 2015 *)
PROG
(PARI) concat(0, Vec(x*(4 + 22*x + 40*x^2 + 23*x^3 + 7*x^4) / ((1 - x)^4*(1 + x)^2) + O(x^50))) \\ Colin Barker, Aug 23 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 17 2012
STATUS
approved