login
A211622
Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and w+2x+3y>1.
2
0, 3, 26, 94, 229, 457, 800, 1284, 1931, 2767, 3814, 5098, 6641, 8469, 10604, 13072, 15895, 19099, 22706, 26742, 31229, 36193, 41656, 47644, 54179, 61287, 68990, 77314, 86281, 95917, 106244, 117288, 129071, 141619, 154954, 169102, 184085, 199929, 216656
OFFSET
0,2
COMMENTS
For a guide to related sequences, see A211422.
FORMULA
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>5.
From Colin Barker, Dec 05 2017: (Start)
G.f.: x*(3 + 17*x + 22*x^2 + 5*x^3 + x^4) / ((1 - x)^4*(1 + x)).
a(n) = (8*n^3 - 4*n^2 + 3*n - 2) / 2 for n>0 and even.
a(n) = (16*n^3 - 8*n^2 + 6*n - 2) / 4 for n odd.
(End)
MATHEMATICA
t = Compile[{{u, _Integer}},
Module[{s = 0}, (Do[If[w + 2 x + 3 y > 1,
s = s + 1], {w, #}, {x, #}, {y, #}] &[
Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]];
Map[t[#] &, Range[0, 70]] (* A211622 *)
FindLinearRecurrence[%]
(* Peter J. C. Moses, Apr 13 2012 *)
Join[{0}, LinearRecurrence[{3, -2, -2, 3, -1}, {3, 26, 94, 229, 457}, 35]] (* Ray Chandler, Aug 02 2015 *)
PROG
(PARI) concat(0, Vec(x*(3 + 17*x + 22*x^2 + 5*x^3 + x^4) / ((1 - x)^4*(1 + x)) + O(x^40))) \\ Colin Barker, Dec 05 2017
CROSSREFS
Cf. A211422.
Sequence in context: A048372 A269342 A292001 * A062124 A169832 A322300
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 16 2012
STATUS
approved