login
Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and 2w+x+y>2.
2

%I #10 Dec 04 2017 16:12:55

%S 0,1,18,73,192,395,710,1157,1764,2551,3546,4769,6248,8003,10062,12445,

%T 15180,18287,21794,25721,30096,34939,40278,46133,52532,59495,67050,

%U 75217,84024,93491,103646,114509,126108,138463,151602,165545,180320,195947,212454

%N Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and 2w+x+y>2.

%C For a guide to related sequences, see A211422.

%H Colin Barker, <a href="/A211619/b211619.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-2,3,-1).

%F a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>6.

%F From _Colin Barker_, Dec 04 2017: (Start)

%F G.f.: x*(1 + 15*x + 21*x^2 + 11*x^3 - 2*x^4 + 2*x^5) / ((1 - x)^4*(1 + x)).

%F a(n) = 4*n^3 - 5*n^2 + 5*n - 4 for n>1 and even.

%F a(n) = 4*n^3 - 5*n^2 + 5*n - 5 for n>1 and odd.

%F (End)

%t t = Compile[{{u, _Integer}},

%t Module[{s = 0}, (Do[If[2 w + x + y > 2,

%t s = s + 1], {w, #}, {x, #}, {y, #}] &[

%t Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]];

%t Map[t[#] &, Range[0, 70]] (* A211619 *)

%t FindLinearRecurrence[%]

%t (* _Peter J. C. Moses_, Apr 13 2012 *)

%t Join[{0, 1},LinearRecurrence[{3, -2, -2, 3, -1},{18, 73, 192, 395, 710},34]] (* _Ray Chandler_, Aug 02 2015 *)

%o (PARI) concat(0, Vec(x*(1 + 15*x + 21*x^2 + 11*x^3 - 2*x^4 + 2*x^5) / ((1 - x)^4*(1 + x)) + O(x^40))) \\ _Colin Barker_, Dec 04 2017

%Y Cf. A211422.

%K nonn,easy

%O 0,3

%A _Clark Kimberling_, Apr 16 2012