login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211619 Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and 2w+x+y>2. 2
0, 1, 18, 73, 192, 395, 710, 1157, 1764, 2551, 3546, 4769, 6248, 8003, 10062, 12445, 15180, 18287, 21794, 25721, 30096, 34939, 40278, 46133, 52532, 59495, 67050, 75217, 84024, 93491, 103646, 114509, 126108, 138463, 151602, 165545, 180320, 195947, 212454 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For a guide to related sequences, see A211422.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).

FORMULA

a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>6.

From Colin Barker, Dec 04 2017: (Start)

G.f.: x*(1 + 15*x + 21*x^2 + 11*x^3 - 2*x^4 + 2*x^5) / ((1 - x)^4*(1 + x)).

a(n) = 4*n^3 - 5*n^2 + 5*n - 4 for n>1 and even.

a(n) = 4*n^3 - 5*n^2 + 5*n - 5 for n>1 and odd.

(End)

MATHEMATICA

t = Compile[{{u, _Integer}},

   Module[{s = 0}, (Do[If[2 w + x + y > 2,

         s = s + 1], {w, #}, {x, #}, {y, #}] &[

      Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]];

Map[t[#] &, Range[0, 70]]  (* A211619 *)

FindLinearRecurrence[%]

(* Peter J. C. Moses, Apr 13 2012 *)

Join[{0, 1}, LinearRecurrence[{3, -2, -2, 3, -1}, {18, 73, 192, 395, 710}, 34]] (* Ray Chandler, Aug 02 2015 *)

PROG

(PARI) concat(0, Vec(x*(1 + 15*x + 21*x^2 + 11*x^3 - 2*x^4 + 2*x^5) / ((1 - x)^4*(1 + x)) + O(x^40))) \\ Colin Barker, Dec 04 2017

CROSSREFS

Cf. A211422.

Sequence in context: A154670 A041626 A039608 * A305018 A041628 A022145

Adjacent sequences:  A211616 A211617 A211618 * A211620 A211621 A211622

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 16 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 08:44 EDT 2018. Contains 315232 sequences. (Running on oeis4.)