login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211614 Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and w+x+y>2. 2
0, 1, 11, 57, 160, 344, 633, 1051, 1622, 2370, 3319, 4493, 5916, 7612, 9605, 11919, 14578, 17606, 21027, 24865, 29144, 33888, 39121, 44867, 51150, 57994, 65423, 73461, 82132, 91460, 101469, 112183, 123626, 135822, 148795, 162569, 177168, 192616, 208937 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For a guide to related sequences, see A211422.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>5.

From Colin Barker, Dec 04 2017: (Start)

G.f.: x*(1 + 7*x + 19*x^2 - 6*x^3 + 3*x^4) / (1 - x)^4.

a(n) = (8*n^3 - 15*n^2 + 15*n - 12)/2 for n>1.

(End)

MATHEMATICA

t = Compile[{{u, _Integer}},

   Module[{s = 0}, (Do[If[w + x + y > 2, s = s + 1], {w, #}, {x, #}, {y, #}] &[ Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]];

Map[t[#] &, Range[0, 60]]  (* A211614 *)

FindLinearRecurrence[%]

(* Peter J. C. Moses, Apr 13 2012 *)

Join[{0, 1}, LinearRecurrence[{4, -6, 4, -1}, {11, 57, 160, 344}, 34]] (* Ray Chandler, Aug 02 2015 *)

PROG

(PARI) concat(0, Vec(x*(1 + 7*x + 19*x^2 - 6*x^3 + 3*x^4) / (1 - x)^4 + O(x^40))) \\ Colin Barker, Dec 04 2017

CROSSREFS

Cf. A211422.

Sequence in context: A201150 A114030 A071984 * A244497 A101094 A187693

Adjacent sequences:  A211611 A211612 A211613 * A211615 A211616 A211617

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 16 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 25 03:06 EST 2018. Contains 299630 sequences. (Running on oeis4.)