login
Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and w+x+y>1.
2

%I #11 Dec 04 2017 09:05:32

%S 0,1,20,78,199,407,726,1180,1793,2589,3592,4826,6315,8083,10154,12552,

%T 15301,18425,21948,25894,30287,35151,40510,46388,52809,59797,67376,

%U 75570,84403,93899,104082,114976,126605,138993,152164,166142,180951,196615,213158

%N Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and w+x+y>1.

%C For a guide to related sequences, see A211422.

%H Colin Barker, <a href="/A211613/b211613.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.

%F From _Colin Barker_, Dec 04 2017: (Start)

%F G.f.: x*(1 + 16*x + 4*x^2 + 3*x^3) / (1 - x)^4.

%F a(n) = (-6 + 9*n - 9*n^2 + 8*n^3)/2 for n>0.

%F (End)

%t t = Compile[{{u, _Integer}}, Module[{s = 0}, (Do[If[w + x + y > 1, s = s + 1], {w, #}, {x, #}, {y, #}] &[Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]];

%t Map[t[#] &, Range[0, 60]] (* A211613 *)

%t FindLinearRecurrence[%]

%t (* _Peter J. C. Moses_, Apr 13 2012 *)

%t Join[{0},LinearRecurrence[{4, -6, 4, -1},{1, 20, 78, 199},35]] (* _Ray Chandler_, Aug 02 2015 *)

%o (PARI) concat(0, Vec(x*(1 + 16*x + 4*x^2 + 3*x^3) / (1 - x)^4 + O(x^40))) \\ _Colin Barker_, Dec 04 2017

%Y Cf. A211422.

%K nonn,easy

%O 0,3

%A _Clark Kimberling_, Apr 16 2012