login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211613 Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and w+x+y>1. 2
0, 1, 20, 78, 199, 407, 726, 1180, 1793, 2589, 3592, 4826, 6315, 8083, 10154, 12552, 15301, 18425, 21948, 25894, 30287, 35151, 40510, 46388, 52809, 59797, 67376, 75570, 84403, 93899, 104082, 114976, 126605, 138993, 152164, 166142, 180951, 196615, 213158 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For a guide to related sequences, see A211422.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.

From Colin Barker, Dec 04 2017: (Start)

G.f.: x*(1 + 16*x + 4*x^2 + 3*x^3) / (1 - x)^4.

a(n) = (-6 + 9*n - 9*n^2 + 8*n^3)/2 for n>0.

(End)

MATHEMATICA

t = Compile[{{u, _Integer}}, Module[{s = 0}, (Do[If[w + x + y > 1, s = s + 1], {w, #}, {x, #}, {y, #}] &[Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]];

Map[t[#] &, Range[0, 60]]  (* A211613 *)

FindLinearRecurrence[%]

(* Peter J. C. Moses, Apr 13 2012 *)

Join[{0}, LinearRecurrence[{4, -6, 4, -1}, {1, 20, 78, 199}, 35]] (* Ray Chandler, Aug 02 2015 *)

PROG

(PARI) concat(0, Vec(x*(1 + 16*x + 4*x^2 + 3*x^3) / (1 - x)^4 + O(x^40))) \\ Colin Barker, Dec 04 2017

CROSSREFS

Cf. A211422.

Sequence in context: A219941 A266133 A083127 * A292360 A002609 A195322

Adjacent sequences:  A211610 A211611 A211612 * A211614 A211615 A211616

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 16 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 09:02 EST 2018. Contains 299384 sequences. (Running on oeis4.)