This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211612 Number of ordered triples (w,x,y) with all terms in {-n,...-1,1,...,n} and w+x+y>=0. 2
 0, 4, 35, 117, 274, 530, 909, 1435, 2132, 3024, 4135, 5489, 7110, 9022, 11249, 13815, 16744, 20060, 23787, 27949, 32570, 37674, 43285, 49427, 56124, 63400, 71279, 79785, 88942, 98774, 109305, 120559, 132560, 145332, 158899, 173285, 188514, 204610, 221597 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For a guide to related sequences, see A211422. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). From Colin Barker, Dec 04 2017: (Start) G.f.: x*(4 + 19*x + x^2) / (1 - x)^4. a(n) = (n*(-3 + 3*n + 8*n^2))/2. (End) MATHEMATICA t = Compile[{{u, _Integer}}, Module[{s = 0}, (Do[If[w + x + y >= 0, s = s + 1], {w, #}, {x, #}, {y, #}] &[Flatten[{Reverse[-#], #} &[Range[1, u]]]]; s)]]; Map[t[#] &, Range[0, 60]]  (* A211612 *) FindLinearRecurrence[%] (* Peter J. C. Moses, Apr 13 2012 *) LinearRecurrence[{4, -6, 4, -1}, {0, 4, 35, 117}, 36] (* Ray Chandler, Aug 02 2015 *) PROG (PARI) concat(0, Vec(x*(4 + 19*x + x^2) / (1 - x)^4 + O(x^40))) \\ Colin Barker, Dec 04 2017 CROSSREFS Cf. A211422. Sequence in context: A003349 A297546 A257600 * A068968 A228887 A185592 Adjacent sequences:  A211609 A211610 A211611 * A211613 A211614 A211615 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 16 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 08:42 EDT 2018. Contains 316405 sequences. (Running on oeis4.)