This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211539 Number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w = 2n - 2x + y. 3
 0, 0, 2, 3, 7, 9, 15, 18, 26, 30, 40, 45, 57, 63, 77, 84, 100, 108, 126, 135, 155, 165, 187, 198, 222, 234, 260, 273, 301, 315, 345, 360, 392, 408, 442, 459, 495, 513, 551, 570, 610, 630, 672, 693, 737, 759, 805, 828, 876, 900, 950, 975, 1027, 1053 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For a guide to related sequences, see A211422. a(n) = sum of natural numbers in interval (floor((n+1)/2),n]. - Jaroslav Krizek, Mar 05 2014 For n > 0, 2*a(n-1) is the sum of the largest parts of the partitions of 2n into two distinct even parts. - Wesley Ivan Hurt, Dec 19 2017 From Paul Curtz, Oct 23 2018: (Start) Consider the 51 first nonnegative numbers in the following boustrophedon distribution:      35--36--37--38--39--40--41--42--43--44--45          34--33--32--31--30--29--28--27--26--46              12--13--14--15--16--17--18--25--47                  11--10---9---8---7--19--24--48                       1---2---3---6--20--23--49                           0---4---5--21--22--50 a(n+1) is the union of the main vertical (0,2,  9,15, 30,40, ... ) and of the shifted main antidiagonal (3,7, 18,26,  45,57, ... ). (End) LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1). FORMULA a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). From Jaroslav Krizek, Mar 05 2014: (Start) a(n) = T(n+1) - T(floor((n+1)/2)) - (n+1), where T(k) = A000217(k). a(n) = Sum_{k=floor((n+1)/2)+1..n} k. a(n) = a(n-1) + n for even n; a(n) = a(n-1) + (n-1)/2 for odd n. (End) From Ralf Stephan, Mar 10 2014: (Start) a(n) = (1/16) * (6n^2 + 2n - 3 + (2n+3)*(-1)^n ). G.f.: (x^3+2x^2)/((1+x)^2*(1-x)^3). (End) From Paul Curtz, Oct 22 2018: (Start) a(2n) = A005449(n), a(2n+1) = A045943(n). a(2n) + a(2n+1) = A045944(n). a(3n) = 3*(0, 1, 5, 10, 19, 28, 42, ...). a(n+1) = a(n) + A065423(n+2). a(-n) = A211538(n+2). (End) EXAMPLE G.f. = 2*x^2 + 3*x^3 + 7*x^4 + 9*x^5 + 15*x^6 + 18*x^7 + ... - Michael Somos, Nov 14 2018 MAPLE a:=n->add(k, k=floor((n+1)/2)+1..n): seq(a(n), n=0..55); # Muniru A Asiru, Oct 26 2018 MATHEMATICA t[n_] := t[n] = Flatten[Table[2 w + 2 x - y - 2 n, {w, 1, n}, {x, 1, n}, {y, 1, n}]] c[n_] := Count[t[n], 0] t = Table[c[n], {n, 0, 70}]  (* A211539 *) FindLinearRecurrence[t] CoefficientList[Series[(x^3 + 2 x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 60}], x] (* Vincenzo Librandi, Mar 12 2014 *) PROG (PARI) a(n)=(1/16)*(6*n^2+2*n-3+(2*n+3)*(-1)^n) \\ Ralf Stephan, Mar 10 2014 (MAGMA) I:=[0, 0, 2, 3, 7]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Mar 12 2014 (GAP) a:=[0];; for n in [2..55] do if n mod 2 = 0 then Add(a, a[n-1]+n); else Add(a, a[n-1]+(n-1)/2); fi; od; Concatenation([0], a); # Muniru A Asiru, Oct 26 2018 CROSSREFS Cf. A211422. Cf. A000217, A005449, A045943, A045944, A065423, A211538. Sequence in context: A135369 A294283 A294122 * A109660 A236544 A075855 Adjacent sequences:  A211536 A211537 A211538 * A211540 A211541 A211542 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 22:55 EST 2019. Contains 329974 sequences. (Running on oeis4.)