login
Smallest number k such that the sum of prime factors of k (counted with multiplicity) equals n times a nontrivial integer power.
1

%I #26 Oct 15 2019 23:27:25

%S 4,15,35,39,51,95,115,87,155,111,123,215,235,159,371,183,302,335,219,

%T 471,395,415,267,623,291,303,482,327,339,791,554,1255,635,655,411,695,

%U 662,447,698,471,734,815,835,519,1211,543,842,1895,579,591,914,2167,1263

%N Smallest number k such that the sum of prime factors of k (counted with multiplicity) equals n times a nontrivial integer power.

%C Smallest k such that sopfr(k) = n * m^q where m, q >= 2.

%C a(n) = A211144(n) except for n = 55, 63, 73, ... Example: a(55) = 1964 = 2^2*491 but A211144(55) = 2631 = 3*877.

%H Amiram Eldar, <a href="/A211537/b211537.txt">Table of n, a(n) for n = 1..10000</a>

%e a(55) = 1964 = 2^2*491, since the sum of the prime divisors counted with multiplicity is 491+4 = 495 = 55*3^2.

%p sopfr:= proc(n) option remember;

%p add(i[1]*i[2], i=ifactors(n)[2])

%p end:

%p a:= proc(n) local k, q;

%p for k while irem(sopfr(k), n, 'q')>0 or

%p igcd (map(i->i[2], ifactors(q)[2])[])<2 do od; k

%p end:

%p seq (a(n), n=1..100);

%Y Cf. A001414, A211144.

%K nonn

%O 1,1

%A _Michel Lagneau_, Jun 27 2012