login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211536 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w=4x-5y. 2
0, 0, 0, 2, 3, 4, 6, 8, 11, 14, 17, 21, 24, 29, 34, 39, 44, 49, 56, 63, 69, 76, 83, 92, 100, 108, 117, 126, 136, 146, 156, 167, 177, 189, 201, 213, 225, 237, 251, 265, 278, 292, 306, 322, 337, 352, 368, 384, 401, 418, 435, 453, 470, 489, 508, 527, 546 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

For a guide to related sequences, see A211422.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,0,-1,0,0,-1,1).

FORMULA

a(n) = a(n-1) + a(n-4) - a(n-6) - a(n-9) + a(n-10).

G.f.: x^3*(2 + x + x^2 + 2*x^3 + x^6) / ((1 - x)^3*(1 + x)*(1 + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Dec 03 2017

MATHEMATICA

t[n_] := t[n] = Flatten[Table[w - 4 x + 5 y, {w, 1, n}, {x, 1, n}, {y, 1, n}]]

c[n_] := Count[t[n], 0]

t = Table[c[n], {n, 0, 70}]  (* A211536 *)

FindLinearRecurrence[t]

LinearRecurrence[{1, 0, 0, 1, 0, -1, 0, 0, -1, 1}, {0, 0, 0, 2, 3, 4, 6, 8, 11, 14}, 57] (* Ray Chandler, Aug 02 2015 *)

PROG

(PARI) concat(vector(3), Vec(x^3*(2 + x + x^2 + 2*x^3 + x^6) / ((1 - x)^3*(1 + x)*(1 + x^2)*(1 + x + x^2 + x^3 + x^4)) + O(x^40))) \\ Colin Barker, Dec 03 2017

CROSSREFS

Cf. A211422.

Sequence in context: A102463 A242110 A056829 * A071764 A238381 A290743

Adjacent sequences:  A211533 A211534 A211535 * A211537 A211538 A211539

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 15 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 13:18 EDT 2019. Contains 328318 sequences. (Running on oeis4.)