The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A211534 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w = 3x + 3y. 3
 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 3, 3, 6, 6, 6, 10, 10, 10, 15, 15, 15, 21, 21, 21, 28, 28, 28, 36, 36, 36, 45, 45, 45, 55, 55, 55, 66, 66, 66, 78, 78, 78, 91, 91, 91, 105, 105, 105, 120, 120, 120, 136, 136, 136, 153, 153, 153, 171, 171, 171, 190, 190, 190, 210 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,10 COMMENTS This sequence consists of six 0's followed by triply repeated triangular numbers. For a guide to related sequences, see A211422. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1). FORMULA a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7). a(n) = floor(n/3)*( floor(n/3) - 1 )/2. - Luce ETIENNE, Jul 08 2014 G.f.: -x^6 / ((x-1)^3*(x^2+x+1)^2). - Colin Barker, Feb 17 2015 a(n) = Sum_{i=0..n-3} i*0^(i mod 3)/3. - Wesley Ivan Hurt, Apr 05 2015 MAPLE A211534:=n->floor(n/3)*(floor(n/3)-1)/2: seq(A211534(n), n=0..100); # Wesley Ivan Hurt, Apr 05 2015 MATHEMATICA t[n_] := t[n] = Flatten[Table[-w + 3 x + 3 y, {w, 1, n}, {x, 1, n}, {y, 1, n}]] c[n_] := Count[t[n], 0] t = Table[c[n], {n, 0, 70}] (* A211534 *) FindLinearRecurrence[t] LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {0, 0, 0, 0, 0, 0, 1}, 70] (* Vincenzo Librandi, Apr 05 2015 *) PROG (PARI) concat([0, 0, 0, 0, 0, 0], Vec(-x^6/((x-1)^3*(x^2+x+1)^2) + O(x^100))) \\ Colin Barker, Feb 17 2015 (Magma) [Floor(n/3)*(Floor(n/3)-1)/2 : n in [0..100]]; // Wesley Ivan Hurt, Apr 05 2015 (Magma) [n le 7 select Floor(n/7) else Self(n-1)+2*Self(n-3)-2*Self(n-4)-Self(n-6)+ Self(n-7): n in [1..70]]; // Vincenzo Librandi, Apr 05 2015 CROSSREFS Cf. A211422, A008805 (w = 2x + 2y and doubly repeated triangular numbers). Sequence in context: A281258 A080607 A013322 * A219816 A177821 A166273 Adjacent sequences: A211531 A211532 A211533 * A211535 A211536 A211537 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 10:29 EST 2022. Contains 358493 sequences. (Running on oeis4.)