login
A211521
Number of ordered triples (w,x,y) with all terms in {1,...,n} and w + 2x = 4y.
3
0, 0, 1, 2, 4, 5, 9, 11, 16, 18, 25, 28, 36, 39, 49, 53, 64, 68, 81, 86, 100, 105, 121, 127, 144, 150, 169, 176, 196, 203, 225, 233, 256, 264, 289, 298, 324, 333, 361, 371, 400, 410, 441, 452, 484, 495, 529, 541, 576, 588, 625, 638, 676, 689, 729, 743
OFFSET
0,4
COMMENTS
For a guide to related sequences, see A211422.
Also, number of ordered pairs (w,x) with both terms in {1,...,n} and w+2x divisible by 4. - Pontus von Brömssen, Jan 19 2020
FORMULA
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7).
a(n) = (2*n^2-n+1+(n-1)*(-1)^n+(-1)^((2*n+1-(-1)^n)/4)-(-1)^((6*n+1-(-1)^n)/4))/8. - Luce ETIENNE, Dec 31 2015
G.f.: x^2*(1 + x + x^2 + x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)). - Colin Barker, Dec 02 2017
MATHEMATICA
t[n_] := t[n] = Flatten[Table[w + 2 x - 4 y, {w, 1, n}, {x, 1, n}, {y, 1, n}]]
c[n_] := Count[t[n], 0]
t = Table[c[n], {n, 0, 70}] (* A211521 *)
FindLinearRecurrence[t]
LinearRecurrence[{1, 1, -1, 1, -1, -1, 1}, {0, 0, 1, 2, 4, 5, 9}, 56] (* Ray Chandler, Aug 02 2015 *)
PROG
(PARI) concat(vector(2), Vec(x^2*(1 + x + x^2 + x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)) + O(x^40))) \\ Colin Barker, Dec 02 2017
(Magma) a:=[0]; for n in [1..55] do m:=0; for i, j in [1..n] do if (i+2*j) mod 4 eq 0 then m:=m+1; end if; end for; Append(~a, m); end for; a; // Marius A. Burtea, Jan 19 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 57); [0, 0] cat Coefficients(R!( x^3*(1 + x + x^2 + x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)))); // Marius A. Burtea, Jan 19 2020
CROSSREFS
Cf. A211422.
Sequence in context: A065514 A152186 A085765 * A039871 A365042 A161375
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 14 2012
EXTENSIONS
Offset corrected by Pontus von Brömssen, Jan 19 2020
STATUS
approved