login
Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^3=(x+y)^2.
2

%I #4 Apr 21 2012 12:14:05

%S 0,0,0,0,1,3,5,7,7,7,7,7,7,7,9,11,13,15,17,19,21,23,25,27,29,31,33,33,

%T 33,33,33,33,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,

%U 72,74,76,78,80,82,84,86,88,90,92,94,98,100,102,104,106,108

%N Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^3=(x+y)^2.

%C For a guide to related sequences, see A211422.

%t t[n_] := t[n] = Flatten[Table[w^3 - (x + y)^2, {w, 1, n}, {x, 1, n}, {y, 1, n}]]

%t c[n_] := Count[t[n], 0]

%t t = Table[c[n], {n, 0, 80}] (* A211517 *)

%Y Cf. A211422.

%K nonn

%O 0,6

%A _Clark Kimberling_, Apr 14 2012